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Axisymmetric Couette flow at large 
Taylor numbers 

By A. A. TOWNSEND 
Emmanuel College, Cambridge 

(Received 23 September 1983) 

Measurements have been made in flow between concentric cylinders with only the 
inner one rotating, for Reynolds numbers (based on flow gap) from 17000 to 120000, 
corresponding to Taylor numbers from 8 x lo7 to 4 x lo9. At the lower speeds 
(Reynolds numbers less than 30 OOO), the large-scale motion consists of toroidal 
eddies, highly uniform in spacing and intensity and convected by a slow axial flow 
past fixed sensors. By synchronizing an external oscillator with the passage frequency, 
flow velocity and small-scale turbulent intensity may be sampled a t  defined stages 
of the passage cycle and averaged to provide maps of the velocity fields and the 
associated distributions of small-scale intensity and Reynolds stress. 

At higher speeds, the passage of toroidal eddies becomes too irregular to establish 
the passage cycle, but, by comparing the velocity fluctuations from four inclined hot 
wires placed near the outer cylinder, the current location of large-scale flow separation 
from the outer cylinder can be approximately determined. Statistics of the temporal 
variations of the location show that the large-scale motion still approximates to the 
toroidal form, but that there are azimuthal variations of separation position and 
velocity that indicate a change from toroidal to helical eddies. Conditional averages 
of flow velocity and small-scale turbulent intensity, based on relative distance from 
the position of flow separation, are very similar in form and magnitude to phase- 
selected averages obtained at lower speeds. 

The considerable changes in the large-scale motion that occur as the Reynolds 
number increases from 300 to 1200 times the critical value are believed to arise from 
increase in the ‘turbulent Taylor number’ of the central flow, based on variation of 
angular momentum and on the eddy diffusion coefficients for linear and angular 
momentum. Effects on the motion of the slow axial flow, always less than 1 Yo of the 
peripheral flow velocity, are also discussed. 

1. Introduction 
In  a recent paper, Smith & Townsend (1983) described hot-wire measurements of 

velocity made in Couette flow between concentric cylinders for the ‘unstable ’ 
configuration in which the outer cylinder is a t  rest. For Reynolds numbers (based 
on flow gap and surface speed of the inner cylinder) from 7000 to 30000, a substantial 
part of the motion consists of axisymmetric toroidal eddies uniformly spaced along 
the cylinder axis, confirming work by Gollub & Swinney (1975), Barcilon et al. (1979), 
Koschmieder (1979), Bouabdallah & Cognet (1980) and Di Prima & Swinney (1981). 
With increasing Reynolds number above 30000, the regularity of arrangement 
diminishes, and, a t  a Reynolds number of 100000, the large-scale circulations are 
neither axisymmetric nor uniformly spaced in the axial direction. Smith & Townsend 
suggested that the original toroids break into segments of length comparable to half 
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the circumference of the annular space, and they linked the change with the observed 
development of wall flows with characteristics similar to those of turbulent flow on 
plane surfaces. At the lower Reynolds numbers, the motion in the wall layers can 
be described as the sum of large-scale axial motion from the toroids and from 
elongated Gortler eddies of small diameter (see Barcilon et al. 1979). As the Reynolds 
number increases, the influence of flow curvature diminishes close to  the wall and 
the Gortler eddies there are replaced by eddies similar to those in plane flows. 

The work reported below aims to determine the structure of the toroidal eddies, 
both the velocity field and the field of associated small-scale turbulent intensity, and 
to trace the changes in the large-scale motion with increase in Reynolds number to 
values for which regularity of the structure is less obvious. These measurements and 
those of Smith & Townsend depend on the presence of a slow axial flow to convect 
the large-scale motions past fixed hot-wire anemometers, and, while that motion is 
both axisymmetric and closely periodic in the axial direction, the output from fixed 
sensors contains periodic components of frequency equal to the axial convection 
velocity divided by the periodic spacing of the toroids. By synchronizing an oscillator 
to the passage frequency, samples of flow quantities can be taken at specific times 
in the passage cycle and averaged over many cycles to map the velocity field of the 
toroidal eddies and the distribution of small-scale intensity within them. These 
conditional averages are similar to  those obtained in mixing layers, jets, and wakes 
by forcing the laminar instability to synchronize with an  external periodic perturb- 
ation (see e.g. Zaman & Husain 1980). A difference is the absence of any external 
perturbation, which is replaced by the well-defind periodic signal induced by the 
regular passage of the toroidal eddies past a stationary anemometer. 

At the larger Reynolds numbers, i t  is not possible to synchronize an oscillator, and 
i t  is necessary to find another way of determining the velocity and position of the 
large-scale circulations that are the successors of the toroids. The method adopted 
uses four single hot wires placed close to the outer cylinder and equally spaced in 
a line parallel to the axis of rotation. If the positions of large-scale flow separation 
and reattachment from the outer cylinder always lie within the span of the wire array, 
i t  is possible to  estimate the current position and velocity of the circulation, and the 
information may be used in two ways. The statistics of position and velocity give 
information about the large-scale velocity pattern near the outer cylinder and its 
temporal changes, and the position of separation may be used as a sampling condition 
to map the velocity and turbulent intensity fields associated with the large-scale 
circulations. 

One reason for study of the changes in large-scale structure of the Couette flow is 
that, at first acquaintance, they seem to contradict the well-established result in 
nearly unidirectional turbulent flows, that  the large-scale tubulent motion is (statis- 
tically) geometrically similar for all Reynolds numbers more than about ten times 
the critical value for laminar instability. In  the axisymmetric Couette flow, consid- 
erable changes occur for Reynolds numbers over the range from 300 to 1000 times 
the critical value. The reason is that  the dynamics of the turbulent motion depend 
both on the friction velocity, which sets the level of velocity fluctuations, and on the 
flow velocity, which sets the level of curvature effects on the motion. The ratio of 
friction velocity to mean-flow velocity in the annulus decreases with increase of 
Reynolds number, and that may be regarded as the basic cause of the changes in flow 
structure. 
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2. Experimental arrangements 
The flow is set up in the annular space between concentric cylinders of radii 

152.4 mm and 229 mm with the inner cylinder rotating a t  angular speeds up to 
24 rev/s. The inner cylinder is 1.80 m long and closely cylindrical in form, the outer 
one 1.85 m long and departing from the true cylindrical shape in places by 1 or 2 mm. 
The ends of the annular space are partially closed by attaching to the inner cylinder 
circular diaphragms of radii 5 mm and 10 mm less than the (mean) radius of the outer 
cylinder. With the unequal blockage of the ends, a slow axial flow is induced, never 
more than 0.5 yo of the peripheral velocity of the inner cylinder, which has the effect 
of convecting the axisymmetric toroidal eddies along the annulus with uniform 
velocity. If the eddies remain unchanged in structure during the passage, the 
temporal variations recorded by a fixed velocity sensor can be used to determine the 
instantaneous spatial distributions in the axial direction. 

For all the measurements, four hot-wire anemometers were placed a t  intervals of 
44 mm in a line parallel to  the axis a t  10 mm from the outer cylinder. They were 
inclined at 45" to the direction of mean flow to be nearly responsive to  the sum of 
the axial and peripheral (azimuthal) velocity fluctuations, and their purpose was to 
provide data for the establishment of the character and current location of the 
large-scale velocity field near the outer cylinder. 

Dual hot wires of X-form, responsive to the streamwise and one transverse 
component of velocity, could be traversed radially in the diametral plane bisecting 
the row of wall wires and in a radial direction 45" downstream of them. The supports 
had a diameter of 3 mm, and pointed to the axis of rotation. 

The anemometers were operated in the constant-temperature mode a t  overheat 
ratios of approximately 1.5, with the outputs amplified by circuits with uniform 
response from zero frequency to a t  least 5 kHz. The outputs were not linearized. A 
small wind tunnel was used for calibration, using steady flow speeds from 1.5 m/s 
to 10 m/s, with the inclination of the wires to the flow adjustable from - 15" to + 15". 
The air temperature of the calibration tunnel could be varied, and, from the wire 
response to temperature, the anemometer output voltages were corrected for 
departures of air temperature from 20 "C. I n  use, similar corrections were made to 
thc output before using the wire calibration. 

No calibrations were made for the wall wires, whose output fluctuations were 
normalized to unit variance, using values calculated from the data recorded on 
magnetic tape for the particular run. For these and some other recordings of the 
anemometer outputs, the signals were passed first through low-pass rcsistance- 
capacity filters to reduce contributions from small-scale motions. 

For measurements with the phase-locked oscillator, the run durations were over 
64 passage cycles, from approximately 15 min a t  the lowest speed to 5 min a t  the 
highest practicable speed, 10 rev/s or Re = 48000. Magnetic-tape recordings were 
made over periods of approximately 1 min for the highest speeds, 20-24 rev/s, and 
2 min for speeds around 10 rev/s. 

3. Notation 
The flow is described in terms of cylindrical polar coordinates; r E distance from 

the axis of rotation, 0 = azimuthal angle, and y = distance from the central 
diametral plane of the cylinders. The velocity components are respectively w, t!+u, 
B+v, where U and I' are mean values and functions of radial position. Then 

U ,  is the peripheral velocity of the inner cylinder, 
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R,, R, are the radii of the inner and outer cylinders, 
d = R,- R, is the flow width, 
z = r-M, is distance from the inner cylinder, 
Re = li, d / v  is the flow Reynolds number, 
T = 0.4RZ, is the flow Taylor number for a radius ratio of 1.5, 
T* is the ratio of the Taylor number to the critical value for the first instability 

7,, 72 are the (kinematic) stresses on the inner and outer cylinders, 
2nG = 2x7, R: = 2 7 ~ 7 ~  Ri is the kinematic transmitted torque per unit length, 
C, = a/( U ,  B,), is the friction coefficient, 
V, is the axial convection velocity of the axisymmetric eddies, 
4, is the circumferential convection velocity of large-scale velocity patterns, 
A(t )  is the complex Fourier amplitude (equation 4.1), 
Q(7) is the covariance of A ( t ) ,  
R(7) = &(~) /&(0)  is the autocorrelation of A(t),  
# is the cycle phase, either that of the passage cycle or that of the complex Fourier 

h is the axial period of the toroidal eddies, 
6 is the rate of energy dissipation per unit mass, 
k, is a critical wavenumber, separating eddies influenced by from those unaffected 

by flow curvature. 
All the quantities are in the kinematic form, i.e. the mechanical values divided by 

the fluid density. The results are given in non-dimensional form, using U, and R, 
as the scales. An exception is radial position, expressed as a fraction of the flow 
width d.  

Two equations for the flow may be quoted. The first expresses the constancy of 
angular momentum flux : 

of the laminar flow (2335), 

amplitude, 

(3.1) 
a(Ul r )  a = E r 2 - v r 3 - - -  

The mean value is taken, in principle, over cylindrical surfaces of constant radius arid 
large axial extent, but, in practice, over a time interval long compared with the time 
for a toroidal eddy to pass the fixed sensor. The second i s  the equation for variation 
of the axial component of flow angular momentum, following a fluid particle : 

ar ' 

For flows with negligible pressure gradients in the flow direction, angular momentum 
remains constant during transport, except for the effect of viscous forces. 

4. Analysis of anemometer data 
The analysis of the anemometer outputs was made on the assumption, confirmed 

by the subsequent results, that  there are present well-defined large-scale flow pattcrns 
spanning the annular gap and of considerable extent in the flow and axial directions. 
For Reynolds numbers less than 30000 (Taylor-number ratios less than l50000), they 
approximate closely to axisymmetric toroidal eddies encircling the inner cylinder and 
uniformly spaced along the axis of rotation. Since the axial drift carries them past 
fixed anemometers with convection velocities no more than 0.5 yo of the peripheral 
flow velocity, their velocity fields generate fluctuations at frequencies much less than 
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Reynolds number 

13570 
16 900 
23 700 
33 300 
48 100 
68 100 
33 000 
47 800 
71 200 

Period (mm) 

164 
150 
157 
145 
142 
139 
148 
143 
132 

h ld  
2.15 
1.96 
2.07 
1.90 
1.86 
1.82 
1.94 
1.88 
1.73 

K l  u, 
0.0032 
0.0030 
0.003 1 
0.0029 
0.0026 
0.002 7 
0.001 10 
0.00096 
0.00099 

TABLE 1 .  Spacing and convection velocities of toroidal eddies 

those from the small-scale turbulence convected past at the much higher flow velocity. 
By measuring the anemometer outputs after passage through suitable high- and 
low-pass filters (for details see Smith & Townsend 1982), the contributions to 
turbulent intensity and Reynolds stress from the axisymmetric motion and from the 
remaining motion can be found. 

Results from the use of filters give information only about the mean-square 
variations of toroidal velocity a t  fixed radial positions. More detail can be found by 
using the well-defined frequency of passage of the toroids past a fixed sensor to 
synchronize a variable frequency oscillator in a phase-lock loop. It is then possible 
to sample velocity and small-scale turbulent intensity a t  defined stages of the passage 
cycle, to accumulate the samples over many cycles, and so to map the velocity fields 
and the associated intensity and stress fields of the toroidal eddies.t The technique 
is very similar to that, used by many workers on large-scale flow patterns in turbulent 
flows. Most of them force transition of the laminar flow by external periodic forces 
and then obtain by a similar process of phase averaging maps of velocity and intensity 
fields. The differences are that here no external disturbance is used and t,hat the flows 
are fully developed and turbulent a t  Reynolds numbers hundreds of times the value 
for first instability of the laminar flow. 

A first use of the technique was to compare phase-averaged velocities from the four 
wall wires, sampling at eight stages of the passage cycle and accumulating the sums 
over 64 cycles. The variations of the averages over the passage cycle were analysed 
into Fourier components, and it was found that the phase of the first harmonic 
increased linearly with axial position of the wire. From the rate of phase advance, 
the spatial period may be calculated, and the results are given in table 1.  

As the Reynolds number increases beyond 30000, the passage frequency becomes 
increasingly less well defined, and accurate synchronization with an external oscillator 
is not possible. Although the large-scale patterns are no longer axisymmetric, they 
remain similar to those of the toroids over circumferential ranges of and axial 
distances of 150-200 mm. The local velocity and location of the pattern near the outer 
wall may be found approximately by forming the complex ‘Fourier’ amplitude, 

t To convert variations of flow qumtities with time to variations with axial position, it i s  
necessary to assume that the axial convection velocity remains the same during the passage cycle. 
Evidence for constant convection velocity is to be found in figure 1 (c), which shows that the spatial 
phase of the large-scale velocity distribution at the other cylinder varies linearly with elapsed time. 
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where v(yn, t )  is the output from the wall wire a t  yn = ( n - f )  6, and 6 is the interval 
between wall wires (44 mm). 

If the instantaneous distribution of v along the line of sensors is 

4Y) = a cos (kY - $4) +f(Y), (4.2) 

where f (  y)  represents irregular contributions from smaller-scale motions without 
long-range order, then the complex amplitude is 

For k = k,  = n/26 andf(y) = 0, 
A(t) = 2a exp (i9) 

and defines the current amplitude and phase (i.e. location of maxima) of v. In  the 
experiment, a value for k of &x mm-l was assumed (a periodic spacing of 150 mm). 
If k = k,, 

If phases of the wall pattern are calculated as the imaginary part of In A ,  the effect 
of the second term is to introduce systematic errors, with a compression of scale near 
$4 = 0 and an extension near # = $7~. The last term describes motions uncorrelated 
with the large-scale motion, and i t  produces random errors in the phase whose effect 
is to reduce the measured amplitudes of velocity and intensity averages obtained by 
using the calculated value of the phase as a sampling condition. 

The magnitude of the last, ‘random-noise’, term can be estimated from the 
complex covaria.nae of A(t) : 

Q(7) = (A(t)  A * ( t f ~ ) ) .  (4.6) 

Writing QS(7)  = 4(a(t) u(t+T)expi($4(t)-#(t+T))), and g ( t )  = Zf(yn,t)expi(k, yn), 

sin {2 (k - -  k,) 6) sin{2(k+k0)S) 
Q(7) = iQs(7) [ 6in -. {+(k - k,) S> ] +iQs(-7i[ sin . {$( k + k, )  S} 

supposing the ‘noise’ part of A t u  be statistically independent of the large-scale 
motion. The first average refers to the large-scale motion, and its variation with time 
delay is slow compared with that of the ‘noise’ correlation ( g ( t ) g * ( t + ~ ) ) .  If the 
individual f( y, ) are uncorrelatcd, the covariance will decrease from an initial value 
of 

&(O) = 4.2 (a2> + (99”) (4.8) 

to a value near 4.2(a2) for a time delay short compared with the timescale of the 
large-scale motion (for k = k, = +c mm-I). 

The effect of the ‘noise’ on the measured value of a coherent variation may be 
calculated from the ratio of the two terms in the previous equation, by assuming that 
the noise contribution to A(t) is normally distributed in the complex plane with 
variance (g(t) g * ( t ) )  = Q(0) - Q(7s) ,  where 7, is P time delay sufficient for ( g ( t )  g*(t + 7 ) )  

to become small, but not sufficient for an appreciable change in the large-scale 
component. To reduce effects from uncertainty in the calculated phase from ‘noise ’, 
averages were found by weighting the samples with the absolute value of the complex 
amplitude as well as selecting sixteen ranges of apparent phase. Then a sampled 
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Attenuation factor 

s 1st harmonic 2nd harmonic 

0 
0.2 
0.4 
0.6 
0.8 
1 .o 
1.2 
1.4 

1 .om 
0.982 
0.924 
0.836 
0.738 
0.548 
0.572 
0.509 

1 .om 
0.924 
0.734 
0.535 
0.384 
0.281 
0.211 
0.164 

TABLE 2.  Noise attenuation of conditional averages 

quantity varying with real phase as cos@ will have its amplitude reduced by the 
random errors in phase by a factor of 

F = 27t/sm f m  ( ( l + ~ x ) ~ + s ~ y ~ ) ~  exp[-+(x2+y2)]dxdy, (4.9) 
-a -00 

where s2 = R(O)/R(7,) - 1. 
Calculated values of the attenuation are given in table 2 for various values of 

the noise, for sampled quantities varying as the first and second harmonics of the 
phase 4. 

For measurements using complex Fourier amplitudes, the intensity of the ‘noise ’ 
component was reduced by two stages of smoothing. Before recording, the anemometer 
outputs were passed through filters of time constants between 6.8 ms and 22 ms, 
selected to given non-dimensional values near 0.8.  The filtered outputs were sampled 
a t  intervals of 4 or 8 ms for recording in digital form on magnetic tape. Complex 
amplitudes were calculated from moving averages of the four wall signals over 16 
consecutive samples, equivalent to averaging over non-dimensional times of about 
8.  As a result, frequencies over 0.6 are strongly attenuated and only the variations 
near the orbital frequency of 0.32 U J R ,  are passed relatively unchanged. Longer 
averaging would lead to excessive attenuation and to slow response of the amplitude 
to changes. With practicable averaging, values of s less than 0.6 are not possible, and 
the table shows that second harmonics are considerably attenuated by the effect of 
noise and that higher harmonics are lost. 

For conditional sampling of velocities, the outputs from the X-wires were filtered 
in the same way before recording on magnetic tape, but no averaging was made of 
the recorded samples. For conditional sampling of ‘ small-scale turbulent intensities ’, 
the outputs passed through high-pass filters before addition and squaring circuits. 

5. The complex autocorrelation 
Figures 1-3 show some of the measurements of the complex autocorrelation R(7) ,  

normalized so that R(0)  = (1, O ) ,  a s  trajectories in the complex plane and as plots of 
t,he modulus and phase angle against time de1ay.t At the largest Reynolds numbers, 
the trajectory, after a rapid movement towards the origin, begins to trace out a 

t The phase angles are expressed as fractions of 2-x, and lie in the range -0.54.5; in radians, 
from --x to K. 
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FIGURE 1. Autocorrelations of the complex amplitude for Reynolds numbers of 34000 and 49000 
with V, /U,  = 0.003: (a) Trajectory in the complex plane; ( b )  absolute value vs. non-dimensional 
time delay; ( c )  phase angle us. time delay. 
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FIGURE 2 .  Autocorrelations of the complex amplitude for Reynolds numbers of 68000 and 97000 
with V, /U,  = 0.003: (a) trajectory in the complex plane; (6) absolute value vs. non-dimensional 
time delay; (c) phase angle vs. time delay. 
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FIGURE 3. Autocorrelation of the complex amplitude for a Reynolds number of 97000 and for 
I;/(:, = 0.001; ( a )  trajectory in the complex plane; (6) absolute value ws. non-dimensional time 
delay; ( c )  phase angle vus. time delay. (Broken lines are B or 20, numbers are gap ratios z/d. )  
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cycloidal path composed of an anticlockwise orbit of non-dimensional frequency near 
0.30 and a smaller, clockwise orbit of frequency near 0.02. By itself, the clockwise 
orbit would indicate that the velocity field is helical in structure, produced by 
wall-velocity distributions of the form 

(5.1) 
convected circumferentially a t  the flow velocity near the centre of the annulus, where 
the angular velocity is 0.32Ul/Rl. 

A clockwise trajectory with non-dimensional frequency 0.02 could be produced by 
the axial convection a t  velocity V, of toroidal eddies of form 

15.2) 

v(y, 0) = b cos ( k y - 8 )  

v(g, 0) = a cos ky  

(circumferential convection of axisymmetric flow patterns causes no velocity changes 
a t  a fixed sensor). 

Superposition of the two orbits means that the large-scale flow is nearly composed 
of velocity distributions of the form 

(5.3) v(y,8) = a cosky+b cos(ky-0) 

convected with axial velocity V,, and circumferential angular velocity 52,. Depending 
on the ratio a l b ,  the motion could be described either (if as toroidal eddies inclined 
to the diametral plane and with an azimuthal modulation of velocity in quadrature 
with displacement of the eddy axis (a  9 b), or (ii) as nearly helical eddies with axial 
deviations from a true helix in quadrature with variation of velocity (a  < b). I n  
either case, the complex amplitude is (for k = k, = n/2S and ignoring the ‘noise’ 
contribution) 

A(t) = 2aexp(ikVct)+2b exp(i(k%-Q,)t), (5.4) 

(5 .5)  

and the covariance is 

Q(7) = 4a2 exp (-ikVc7)+4b2 exp (-i(k%-Qc)7). 

By itself, the second term in (5.3) represents ‘single-start’ helical eddies, of sense 
the same as that of the mean-flow streamlines. That the sense depends on the axial 
flow was confirmed by interchanging the end diaphragms, so reversing the direction 
of axial flow, and observing that the trajectory became clockwise. 

The simple doubly periodic form of (5.3) and (5 .5)  is valid only for moderate time 
delays, especially for the larger Reynolds numbers. Both components decrease in 
amplitude, and, a t  Reynolds numbers of 100000, the amplitude of the toroidal 
component is reduced by a factor of three for a non-dimensional time delay of 40, 
while the helical component has decreased by a factor nearer ten. 

A few measurements have been made of autocorrelations with the axial velocity 
reduced from the standard value of nearly 0.003U1 to around O.OOIOUl (figure 3). 
Only for the largest Reynolds numbers are there clear variations at  the orbital 
frequency, and the variations appear to be mostly of absolute value with little 
modulation of phase. For not too long delays, the autocorrelation of figure 3 is 
described approximately by 

& ( T )  = (4a2+2b2 cos (52,7)) exp (ikVc7), 

v(y, 8) = (a + b COY 0) cos ky 

(5.6) 

( 5 . 7 )  

which would be produced by velocity distributions of the form 

convected with axial velocity V, and angular velocity 52,. 
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6. Velocity fields of the large eddies 
The conditional averages of the velocity fluctuations, based on the phase determined 

either from a phase-locked oscillator or from the complex amplitude A(t),  can be used 
to map the velocity field of the largl: eddies, reliably if the field is closely periodic 
in the axial direction but less so if the axial periodicity is imperfect. Figure 4 shows 
the variation with phase of conditionally averaged components of the velocity 
fluctuation, for a range of radial positions and for Reynolds numbers of 17000 and 
97000. For the smaller Reynolds number, phase conditions for averaging were 
obtained from a synchronized oscillator and there is little uncertainty in the phase. 
Except near the flow boundaries, the averaged velocities vary nearly sinusoidally with 
phase, and the distributions may be described by 

(3 c .  e), w = ;sin ~ = f ( r ) s i n ( # - - # ~ ) ,  V = - C O S ( + - $ ~ )  cos sin - , 
C 
r 

(6.1) 

where 
That is to say, the variations of u and w are nearly in phase at all radial stations, 

with the variation of v in quadrature and reversing in sign across the flow centre. 
The amplitudes of the u- and v-variations are small near the flow centre, while that 
of w is a maximum there, decreasing towards the flow boundaries. 

If the velocity patterns are ‘frozen’ and convected unchanging past the sensors 
with velocity V,, the axial distributions are obtained by substituting ky for $ in (6.1), 
where k is the wavenumber of the axial variation (approximately +yt mrn-l). At a 
Reynolds number of 35000 the autocorrelation (figure 1 )  shows that there is very little 
azimuthal variation of the large-scale structure, and the velocity distributions are 
nearly of the form 

is the reference phase of the run. 

C 
r r 

u = f ( r )  sin ky, v = cos ky, w = - sin (y)  sin ky. (6.2) 

Inspection of the cycle variations for the larger Reynolds number shows much less 
regularity. The sampling conditions were obtained from the phase of the complex 
amplitude, which is subject to considerable disturbance from intrusive, small-scale 
velocity fluctuations and from the probable variations in the effective wavenumber 
of the axial-velocity distribution (4.2). Particularly near the flow centre, the 
amplitudes of the axial and radial components are small compared with the azimuthal 
(streamwise) component, and the phases are most uncertain. With allowance for the 
various errors and uncertainties, i t  can be said that the cycle variations for Re = 97 000 
are broadly similar to those for Re = 17000, to the extent that the cycle phase of 
the w-variation reverses across the flow and that the variations of u near the 
boundaries and of w near the flow centre are similar and in quadrature with those 
of v. 

The azimuthal variations are specified by the complex autocorrelation &(7), and, 
using the results of figure 2, the velocity distributions approximate to the form 

u = f ( r ) ( a  cosky+b cos(ky-O)), 
v = - c o s ( ~ ) ( n c o s k ~ + b c o s ( k . y - - 0 ) ) .  C 

r t 
C 
r 

w = - sin g) (a  sin ky+b sin (ky- J 
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For the smaller Reynolds number, the velocities are nearly independent of angle, 
and they are convected past the sensor with the axial convection velocity V,, i.e. 
b <. a. At the larger Reynolds number, the velocities vary azimuthally as a + b cos 8, 
and they are convected with the angular convection velocity 0, z 0.32U1/R,. 

Near the flow boundaries, variations of averaged radial component of velocity are 
not so closely sinusoidal, having peaked maxima of velocity directed away from the 
adjacent boundary and flat minima of velocity toward it. Ignoring the small 
contributions from the second harmonic, the velocity variations over the cycle may 
be specified by the amplitudes and phases of the first harmonics. Figure 5 shows the 
radial distributions of amplitude and phase for Reynolds numbers between 17000 and 
97000, and the measurements are further summarized in figure 6, which shows the 
‘peak’ amplitudes as a function of Reynolds number. For the radial component, the 
‘peak’ amplitude is the value near the centre of the flow gap (at z /d  = 0.49), but the 
maximum of the axial and azimuthal components occur near the cylinders and the 
values shown are amplitudes a t  z/d = 0.87 and z/d = 0.99. Also included are 
amplitudes calculated from measurements of the ‘ low-frequency ’ intensities obtained 
by high- and low-pass filtering, on the assumption that the (low-frequency) variation 
is sinusoidal and of constant amplitude. If the whole motion is in the form of regularly 
spaced, axisymmetric toroidal eddies, these amplitudes should agree with those from 
conditional averages. 

As can be seen, there are considerable differences. First, the amplitudes from the 
filtered intensities become small for Reynolds numbers over 50000 since they do not 
include any contributions from components of orbital frequency. Next, observation 
of the phase-lock circuit and inspection of time records of the low-frequency 
fluctuations show that breaks in the regularity of eddy passage are appreciable a t  
a Reynolds number of 34000 and become frequent for larger Reynolds numbers. With 
loss of register between the oscillator and the passing eddies, the sampling criterion 
becomes blurred and the measured amplitudes less than the true amplitudes of 
variation within the eddies. Finally, although averages based on phase of the complex 
amplitude are less affected by irregularity of eddy spacing, random errors in phase 
arise from the ‘noise’ of the small-scale eddies and from variation of the effective 
wavenumber. 

Taking into account the possibilities of error, amplitudes from the three methods 
are consistent for the smaller Reynolds numbers, and the differences for Reynolds 
number near 50000 are no more than would be expected. Only the complex amplitude 
method can be used for the largest Reynolds numbers. Making use of table 2 ,  the 
measured conditional averages are estimated to be less than the true values in ratios 
of approximately 0.85. With that in mind, the amplitudes are found to decrease with 
increase of Reynolds number, for the v- and w-components, possibly by a factor of 
0.6 over the whole range. That factor is a little more than might be expected from 
the change in friction velocity, in a ratio of 0.80 if the friction coefficient varies as 
R$, and of 0.75 if it varies as R;i. 

The momentum flux carried by the large eddy motion is no more than + of the total 
flux, and the circumferential velocity variations, though in phase with the radial 
variations, are small near the centre of the flow gap. That and the peaks in the 
variation of w (figure 4) suggest that the motive power of the motion lies within the 
wall layers and that the separating fluid coasts across the gap, conserving angular 
momentum and neither gaining nor losing much energy. 
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7. Distribution of small-scale turbulence in the large eddies 
A clear distinction between the large-scale mqtion and the irregular turbulent 

motion is possible only if the large eddies are uniform both in velocity pattern and 
scale, so that the turbulent component appears as the residue after subtracting the 
coherent velocity field of the large eddies. Favourable conditions are approached for 
flows of Reynolds numbers less than 25000 for which records of low-frequency 
velocity fluctuations show the amplitude and period to be remarkably uniform. For 
the standard end conditions, the non-dimensional passage frequencies are about 
0.019, and are attenuated by factors of 16 (more at lower Reynolds numbers) after 
passage through resistance-capacity high-pass filters of time constant 0.1 s (a 
non-dimensional time constant of 0.3 for Re = 25000). The turbulent component has 
a broad spectrum with centroid near a non-dimensional frequency of 3, and it suffers 
little attenuation. 
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Figure 7 shows the results of phase-sampling ‘ small-scale turbulent ’ intensities and 
stresses, using the phase-locked oscillator for Re = 17000 and the complex amplitude 
for Re = 97000 to provide sampling criteria for anemometer signals squared after 
passage through suitable high-pass filters. 

For the smaller Reynolds numbers, mean values are in fair agreement with 
intensities of the ‘ high-frequency ’ component measured using the filter method. 
Characteristically, the maxima of intensity and Reynolds stress occur a t  positions 
of maximum radial velocity away from the nearer boundary, i.e. the phase of the 
variation reverses across the centre of the flow. Near the flow centre, the variations 
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are small with two maxima, one for maximum outward velocity and one for 
maximum inward velocity. Note that the variations of Reynolds stress are propor- 
tionally much larger than those of intensities. 

At the larger Reynolds number, the anemometer outputs were passed through 
filters of non-dimensional time constants about 0.8, a compromise value chosen to 
reduce contributions from fluctuations of orbital frequency without too much 
attenuation of small-scale turbulence. It may be seen that the intensities and stresses 
are considerably less than would be expected from the low-speed results, but again 
the fractional variations of Reynolds stress are much larger than those of the 
intensities. The variations are similar in form, and the differences in magnitude may 
be due to  attenuation of the random component by the filters. It is possible that the 
distributions of intensity and stress within the large-scale motions are similar over 
the range of speeds investigated. 

8. Dependence of large-scale eddy structure on Reynolds number 
Over the range of Reynolds number 8500-120000 three changes are observed in 

the structure of the large eddies and in the turbulent flow. 
(i) The (reversed) radial gradients of mean angular momentum are reduced by a 

factor of about 1.5 between Re = 8500 and Re = 50000 (Smith & Townsend 1982). 
The present measurements, though not designed to provide accurate values of mean 
velocity, confirm the trend to Re = 120000. 

(ii) Turbulent motion and mean flow in the wall layers change from being 
completely dominated by dynamical effects of flow curvature to having an appreciable 
region of ‘wall turbulent flow ’ relatively unaffected by the curvature. 

(iii) The large eddies change in form from extremely regular toroids to less regular, 
possibly segmented, helical eddies. Their velocity scales, expressed as fractions of the 
friction velocity, may not decrease significantly. 

The velocity distribution in an helical eddy can be regarded as the linear super- 
position of two azimuthal modes, symmetrical with respect to  the axial direction, 
i.e. 

r 

cos ky cosO+C cos (7) sinky sine, 
r r 

and, since the toroidal eddies are similar to  the first laminar, axisymmetric mode of 
instability, i t  seems possible that the changes in velocity pattern are associated with 
changes in the effective ‘turbulent ’ Taylor number for the central part of the flow 
where the motion is dominated by the effects of flow curvature. 

Although the form of the Taylor number for a stationary outer cylinder conceals 
it, the number is descriptive of a flow with two distinct scales of velocity, one 
specifying the overall variation of angular momentum, the other the rate of flow 
curvature, with two functions for the fluid viscosity, axial diffusion of angular 
momentum and energy dissipation of the motion in the axial and radial directions. 
By assuming flow similarity in the outer parts of each wall layer, i.e. that  the motion 
is determined by the transmitted torque, the rate of flow curvature and distance from 
the flow boundary, the two scales can be found by the analogy between Couette flow 
and BBnard convection. I n  the analogy, the temperature coefficient of buoyancy ag 
corresponds to  21J/r2, t,he buoyancy flux with the flux of angular momentum 
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UWr = G / r ,  and the mean temperature with mean angular momentum [Jr. If the 
variation of 2U/r2  can be ignored, dimensional arguments show that the variation 
of Ur over the region of strong flow curvature is a multiple of d. Then, by analogy 
with the Rayleigh number for BBnard convection, the Taylor number is 

where v, is the eddy viscosity describing energy transfer from the toroids or helices 
to  the small-scale turbulence, and vd is the eddy diffusion coefficient for axial 
variations of angular momentum. 

To find the dependence of the eddy viscosity and the eddy diffusivity on the flow 
parameters, scale velocities and scale lengths must be found characteristic of the 
small-scale motions that transfer energy and momentum. Because the turbulent 
motion itself may be strongly influenced by the flow curvature, the choice is not as 
straightforward as in unidirectional flows. For large Reynolds numbers, rates of shear 
for the smallest eddies of the dissipation chain greatly exceed the rate of flow 
curvature, and the distribution of energy among eddies of different sizes is given by 
the Kolmogorov spectrum 

E ( k )  = Cdk-8, (8.3) 

where e is the rate of energy dissipation, and k- l ,  the inverse of the wavenumber, 
specifies eddy size. The distribution can be valid only for eddy sizes small compared 
with those containing most of the turbulent energy, and also sufficiently small that  
their velocity gradients are large compared with the rate of flow curvature. The last 
condition may be expressed as k 9 k,, where 

I n  the central region of nearly constant Ur, flow energy is transferred to  the 
turbulence at a rate 2GU/r3, and the rate of energy dissipation should be of 
comparable magnitude. Omitting all constants of order one, 

k, = u,/@ (8.5) 

and k, d = (d /R, )  C;; x 15, implying that the effect of flow curvature is small only 
for eddies considerably less in size than the flow width. The turbulence spectra 
reported by Smith & Townsend have median wavenumbers near kd = 12 for low 
speeds, and the nearly isotropic spectrum begins at a similar wavenumber for 
Re = 100000. 

Curvature effects in flows with nearly irrotational mean flow commonly lead to 
generation of long Gortler eddies with axes and vorticity nearly parallel with the flow. 
Fully three-dimensional eddies are not expected for eddies of size greater than k;l ,  
and energy transfer and momentum diffusion is expected to be weak, the main effect 
of the Gortler eddies being to convect without irreversible mixing. Then the main 
energy transfer is to  eddies of sizes in the region of k i l .  

The velocity scale for eddies of that  size is dk$, and so the eddy viscosity us is 
of magnitude 
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where A,  is a constant near one. Putting vd equal to the product of friction velocity 
~f and flow width, i.e. (Gj’U, R,) (d /R, ) ,  the turbulent Taylor number becomes 

Over the range of Reynolds number 17000 to 120000, the turbulent Taylor number 
changes in the ratio 1.63: 1 (assuming friction coefficient proportional to R ~ i t ) ,  a 
change that could be sufficient for development of a higher-order mode of instability 
in the viscous laminar flow. Coles (1965) found that the first ‘wave’ mode appeared 
in his apparatus a t  a Taylor-number ratio of 1.55 for a radius ratio of 1.144, which 
is much less than 1.5, the ratio in use. 

No account has been taken of possible changes in the boundary conditions a t  the 
edges of the central, curvature-dominated flow. The conditions should be that normal 
velocity is zero and that slow velocity changes in the axial and circumferential 
directions cause stress fluctuations of nearly 

where v is the velocity fluctuation. If the stress changes in the central flow due to 
toroidal eddies are described by the eddy viscosity vd, changes in surface stresses will 
be in fixed proportion to them. 

9. The radial distribution of mean angular momentum 
In  $8 it  was argued that only the small-scale eddies of the turbulent motion (with 

wavenumbers more than kc defined by (8.4)) can be fully three-dimensional and 
relatively unaffected by the curvature and strain rates of the mean flow. Their action 
on the mean flow and on the larger Gortler-type eddies is to transport momentum 
down velocity gradients while the larger eddies diffuse and equalize angular mom- 
entum. The larger eddies, being of considerable extent in the flow direction and so 
with small pressure gradients, move fluid around while conserving the angular 
momentum, and their equalization of differences in angular momentum is opposed 
by the tendency of the small, more nearly isotropic, eddies to produce a condition of 
solid-body rotation. From that qualitative description of the roles of the two kinds 
of eddy, i t  appears that radial gradients of angular momentum near the flow centre 
should lie between zero and ZU, the value for solid-body rotation. If the eddy 
diffusivity for angular momentum is proportional to the product of friction velocity 
and flow width, values of the non-dimensional gradient U;l d(  U, r)/dr should be a 
multiple of the ratio of the eddy viscosity for momentum transport to that eddy 
diffusivity. The ratio is proportional to Gi. 

A similar result may be reached by assuming gradient diffusion near the centre of 
the annulus, with eddy transport coefficients v, for momentum and vd for angular 
momentum. Then the equation (3.1) for flux of angular momentum becomes 

t Levels of turbulent intensity in the flow are so large - around 15 yo - that Reynolds stresses 
cannot be measured with sufficient accuracy to determine c l o s ~ l y  the dependence of friction 
coefficient on Reynolds number. The assumed dependence as R,“ is broadly consistent with the 
available measurements. 
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which can be rearranged as 

Approximating the second term by using Ur x +U,R,, and with a value for v, of 
A,GI(U,R,) (see (8-6)L 

1 d(Ur) - v, "(l-A,).  
U, dr v,+vd r 

(9.3) 

If Vd is of order @d/R, ,  i.e. the prpduct of the friction velocity 7: and the flow width, 
v ,  is less than vd by a factor of C f ,  and the non-dimensional gradient of Ur becomes 

- O(Cj) 
d d(Ur) 

U,R, dr (9.4) 

Distributions of angular momentum reported by Smith & Townsend (1982) have 
central gradients of 0.07 for Re = 8500 and of 0.05 forLR, = 50000. These values are 
similar in their magnitude and ratio to the values of C f ,  0.040 and 0.033 respectively, 
supposing the friction coefficient to vary as the inverse fourth power of the Reynolds 
number. 

10. Effects of the axial flow on the large eddies 
For Reynolds numbers below 30000, the large eddies are toroidal in form and 

remarkably uniform in scale velocity and axial spacing. Reduction of the slow axial 
flow from the standard value of (approximately) 0.003U1 to O.OOlOU, has no 
appreciable effect on the velocity pattern, perhaps not unexpectedly since the axial 
pitch of the mean flow is 12 mm for the standard condition, small compared with the 
periodic spacing of the toroids, 150 mm. The regularity of spacing and scale velocity 
is remarkable since the toroidal eddies form at the entrance of the annulus distant 
only six periodic spacings from the measurement stations. Apparently, the configu- 
ration of toroidal eddies equally spaced is very stable, and flow patterns formed a t  
the entrance rapidly approach the equilibrium configuration. 

Changes in the axial flow have a considerable effect on the large eddies for Reynolds 
numbers above 50000. For the standard flow, the velocity patterns near the outer 
cylinder can be described to a first approximation by distributions of form 

v, = acosky+b cos(ky-8) (10.1) 

convected axially with velocity V,  = 0.003U,. Th,e velocity pattern is composed from 
a toroidal eddy of velocity scale a added to a 'single-start' helical eddy of scale b, 
the ratio b/a increasing with Reynolds number. The sense of the helical component 
is the same as that of the mean flow helix, as was shown by reversing the direction 
of axial flow. At the highest Reynolds number, the helical component becomes 
dominant. 

For the reduced axial flow, V,  x O.OOlOU,, the relative intensity of the azimuthal 
(helical) mode is less a t  similar Reynolds numbers, and the distribution is better 
described by 

(10.2) 

The second distribution may be described as that of a toroidal eddy with circum- 
ferential modulation of velocity, becoming for large values of b/a  a toroid divided 

v, = a  cosky+b cosky cos8. 
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circumferentially into two equal parts of opposite rotation. While there may be some 
residual helicity, i t  is much less than for the standard axial flow and the ratio b/a 
is much smaller. 

Comparison of the autocorrelations R(7) for the two axial velocities shows that the 
coherences (neglected in the approximate descriptions of (10.1) and (10.2)) for the 
toroidal components are similar but that the coherence of the helical component is 
of longer duration than that of the symmetrical component cosky cose. The 
difference may be that toroidal eddies are not interrupted by velocity nodes and are 
more stable and well-defined than symmetrical modes with two nodes. The smaller 
amplitude of the symmetrical mode indicates that, if the axial velocity is sufficient 
to induce the helical form, the helical mode is decidedly the more unstable and able 
to extract energy from t’he mean flow. 

In  spite of the considerable differences in the large-scale flow, conditional averages 
of velocity fields show that the radial variations of velocity are related to the local 
flow at the outer cylinder in similar ways for both axial velocities. 

11. Concluding remarks 
At the start of the experiments, i t  seemed reasonable to assume that an axial flow 

less than 0.015 of the circumferential flow velocity could have little effect on the 
motion, apart from moving large-scale eddies past fixed sensors. The first evidence 
to the contrary was the change in the large eddies from the toroidal form to the helical 
as Reynolds number increased from 50000 to 100000. That might be regarded as the 
development of secondary, azimuthal modes of flow instability biased towards a 
helical form to conform better with the helical path of the mean flow except for the 
measurements of autocorrelation with reduced axial flow. If the effect were simply 
to select one of two modes that are equally likely in the absence of flow, the large-scale 
motion with reduced flow would be expected to differ only in the proportion of the 
azimuthal modes and not on their total intensity. Autocorrelations a t  Reynolds 
numbers near 100000 (figures 2 and 3) show that the proportions do change but that  
their intensities become much less with reduced axial flow, while the toroidal mode 
is much str0nger.t 

Spectra reported by Smith & Townsend (1982) for axial flows similar to  those of 
the present work show very large changes in form occurring over the range of 
Reynolds numbers 20 000-100000, indicating development of strong Gortler eddies 
in the central flow of lengths ranging from one half-circumference to about a flow 
width. The changes in spectra and in large-eddy form are so large as to suggest that  
the flow has been steered by the axial flow into a new configuration, distinct from 
that existing for small or zero axial flow. Measurements of spectra with small axial 
flows could show whether the Gortler eddies occur only with the helical flow. If they 
are not found with small axial flows, that would be evidence that the flow 
configuration may be drastically changed by an apparently weak axial flow. 

One minor observation should be mentioned. The variations of turbulent intensities 
within the velocity patterns of the large eddies, whether the toroidal eddies at smaller 
Reynolds numbers or the helical ones a t  larger Reynolds numbers, are proportionally 
much less than those of the Reynolds stress (figure 7) ,  with ratios in excess of 2 :  1. 
The behaviour is found with both methods of phase determination. Comparable 
variations in the ratio of Reynolds stress to total turbulent intensity arc not found 

t Calculations of Davey, Di Prima & Stuart (1968) indicate the possibility of helical (‘spiral’) 
modes appearing as an instability of the toroidal eddies. 
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in unidirectional flows with no reversal in sign of the stress, and the effect poses an 
interesting problem. I can only surmise that turbulent fluid generated in the strong 
shear gradients in the wall layers undergoes considerable structural changes as it is 
exposed to the irrotational distortion in the central flow. 
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